1	Isolation and characterization of microsatellite loci for the introduced broad-nosed weevil
2	Galapaganus howdenae howdenae in the Galapágos archipelago
3	
4	C. C. STEPIEN, M. E. KACZMAREK, H. F. MOK, A. J. STUCKERT, P. P. CHEN, S. J.
5	DOWNER and A. S. SEQUEIRA
6	Department of Biological Sciences, Wellesley College, 106 Central Street, Wellesley, MA 02481
7	
8	Keywords: Bottleneck, introduced species, invasive potential, endemic genus
9	
10	Correspondence: Andrea Sequeira, Department of Biological Sciences, Wellesley College, 106
11	Central Street, Wellesley, MA 02481, USA, Fax: 781-283-3642; Email: asequeir@wellesley.edu
12	
13	Running Title: Microsatellite loci for an introduced weevil

14 Abstract

15 Eight microsatellite loci were developed for Galapaganus howdenae howdenae, a winged 16 broad-nosed weevil introduced to the agricultural zone of Santa Cruz Island, Galapágos 17 archipelago. It has also recently been found outside the agricultural zone on endemic vegetation 18 alongside wingless endemic close relatives. Between two to four alleles were documented per 19 locus and observed and expected heterozygosities ranged from 0.034 to 0.932 and 0.130 to 0.735, 20 respectively. Three out of eight loci deviated from Hardy-Weinberg equilibrium, possibly 21 suggesting that populations of G. h. howdenae have experienced some demographic and 22 population structuring effects as a result of their recent colonization history.

23	Galapaganus howdenae howdenae was first reported in the island of Santa Cruz in 1996
24	and has been formally listed as an invasive species in the Galápagos archipelago (Causton et al.
25	2005). The island invader's natural range encompasses lowlands of mainland Ecuador, and in
26	contrast to its endemic counterparts which are flightless, has well-developed metathoracic wings
27	(Lanteri 2004). Even though G. h. howdenae is thought to have been introduced to the lowland
28	agricultural zone in Santa Cruz, it has now been repeatedly found outside of the boundaries of the
29	disturbed area on endemic and introduced vegetation alongside its endemic close relatives.
30	Two microsatellite libraries were created using Msel and Asel restriction enzymes to
31	generate fragments according to the FIASCO (Fast Isolation by AFLP of Sequences COntaining
32	repeats) protocol (Zane et al. 2002). DNA was extracted from four specimens of G. h. howdenae
33	from two localities in Santa Cruz Island using a DNeasy Blood & Tissue Kit (QIAGEN Inc.).
34	Templates were digested and ligated to AFLP (amplified fragment length polymorphism)
35	adaptors and amplified by polymerase chain reaction with the adaptor-specific primers. The
36	mixture was enriched for microsatellite-containing fragments by magnetic bead selection
37	(Streptavidin NEB) with biotinylated (AC) ₁₇ . Selected fragments were then amplified with the
38	adaptor-specific primers and cloned using a TOPO-TA cloning kit (Invitrogen). A total of 334
39	clones were created in MseI and AseI libraries. Plasmids were extracted using QIAprep Spin
40	Miniprep Kit (QIAGEN Inc.) and those bearing inserts greater than 400bp were sequenced and
41	analyzed for repeats using SEQUENCHER version 4.7 (GeneCodes Corporation). Of the 271
42	plasmids screened, 223 were sequenced. From the 67 plasmids containing unique di-, tri- or tetra-
43	nucleotide repeats, 35 contained suitable flanking regions for primer design. Primers were
44	designed using PRIMER 3 (Rozen & Skaletsky 2000) and Invitrogen's web tool OligoPerfect.

45	PCR conditions were successfully optimized for eight microsatellite regions that were
46	later found to be polymorphic. PCR reactions consisted of 1-2uL DNA template (20-120ng
47	DNA), 1uL 10X ThermoPol Reaction Buffer containing 2mM MgSO ₄ (New England Biolabs),
48	0.8mM dNTPs (0.2mM each) (Invitrogen), 0.5uM of each primer, 0.25ul Taq polymerase (New
49	England Biolabs), and 0-3.0mM additional MgCl ₂ in a 10uL final volume. Details of optimal
50	cycling and reaction conditions for genotyping amplifications were not consistent across loci
51	(Table 1). Microsatellite variation was assessed for the eight loci in 59 individuals of the
52	introduced G. h. howdenae from Santa Cruz Island. Genotyping amplifications were performed
53	with one fluorescently tagged primer (HEX, PET, 6FAM, NED from Applied Biosystems).
54	Quartets of PCR products were combined with LIZ600 size standard (Applied Biosystems) and
55	run on an ABI3100 Genetic Analyzer. GENEMAPPER version 4.3 was used to analyze the
56	electropherograms and allele sizes were individually confirmed. Randomly selected individuals
57	were genotyped two to three times and verified by colleagues through blind tests to ensure
58	accuracy in allele calling.
59	Observed heterozygosity, expected heterozygosity, deviation from Hardy-Weinberg
60	equilibrium and linkage disequilibrium were calculated using GENEPOP (Raymond & Rousset
61	1995) and are presented in Table 2. None of the 28 pairs of loci tested showed significant linkage
62	disequilibrium. The average expected heterozygosity across loci was 0.510 and the number of
63	alleles per locus ranged from two to four (Table 2). Three loci (O4, AC30 and J2-2) showed
64	deviation from Hardy-Weinberg equilibrium (p<0.01) using the exact H-W test, option 1.3,
65	Probability Test as implemented in GENEPOP. Additionally, loci AC30 and J2-2 displayed
66	significant heterozygote deficits with one tailed tests, option 1.1 in GENEPOP, and potential for

the presence of null alleles when analyzed with the program Micro-Checker (van Oosterhout *et al.* 2004).

69 Given that this is a relatively recent introduction, it is not unlikely that populations have 70 suffered demographic and genetic bottlenecks. The effects of genetic drift on these populations 71 could account for the small average number of alleles per locus through allele depletion and 72 increased homozygosity. Additionally, little is known about the number of introductions or the 73 continental sources of these introductions, whereby lack of conformation to H-W expectations 74 may be caused by population genetic structure deriving from admixture, rather than due to the 75 presence of null alleles. Mitochondrial markers indicate this recently introduced species has low 76 genetic structure compared to established endemics (Sequeira *et al.*, *in prep*), however, 77 preliminary analyses of large numbers of individuals across six microsatellite loci suggest subtle 78 but significant structure between localities in the agricultural zone and the National Park area. 79 The development of the first microsatellite library within this genus will enable evaluation 80 of the invasive potential of G. h. howdenae and possibly of the impact of this introduced species 81 on endemic Galapaganus species sharing the same habitat. Additionally, if results point towards 82 population admixture then future investigations should look into the geographic origins of that 83 genetic variability across the native range.

84 Acknowledgements

We thank Dr. Chiara Papetti for advice on primer design; Manisha Sijapati for technical
assistance; and Lazaro Roque Albelo, Gálapagos National Park and the Charles Darwin Research
Station for logistics and support. This work was supported by NSF #0817978 to AS and a
Howard Hughes Medical Institute Fellowship to CCS.

89 **References**

90	Causton CE, Peck SB, Sinclair BJ, et al. (2005) Alien insects: Threats and implications for the
91	conservation of the Galápagos Islands. Annals of the Entomological Society of America 99,
92	121-143.
93	Lanteri AA (2004) New taxonomic and biogeographic information on Galapaganus femoratus
94	species group (Coleoptera: Entiminae). Transactions of the American Entomological Society
95	130 , 177-192.
96	Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact
97	tests and ecumenicism. Journal of Heredity 86, 248-249.
98	Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist
99	programmers. In: Bioinformatics Methods and Protocols: Methods in Molecular Biology (eds.
100	Krawetz S, Misener S), pp. 365-386. Humana Press, Totowa, NJ.
101	van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for
102	identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4,
103	535-538.
104	Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure.
105	<i>Evolution</i> 38 , 1358-1370.
106	Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review.
107	Molecular Ecology 11, 1-16.

Table 1 Microsatellite primer sequences, repeat motifs and optimized conditions for genotyping amplifications for each locus. MgCl₂ indicates the concentration (mM) of MgCl₂ added in addition to the 2mM MgSO₄ already in the buffer. Cycles consisted of an initial denaturing step of 5 min at 95°C followed by 8-20 cycles of the following: 94°C for 30 s, a primer-specific touchdown annealing temperature for 40 s decreasing in intervals as indicated from the upper bound to the lower bound, and 72°C for 30 s, followed by 30 cycles at the lower-bound annealing temperature unless otherwise specified, and a final extension at 72°C for 15 min.

Locus	Primer sequences	Repeat motif	Clone size (bp)	MgCl ₂ (mM)	Touchdown range / interval (°C)	GenBank Accession no.
J3	F-TTGTTTCCATTAGCCCTTTTAGCG R-GCAGTTATTCTGTCACATGGTAGA	(TG) ₄₂	170	3.0	49-43°C/0.5°C	GU595389
O4	F-CTTACATGATGCACAGATCCATC R-CATGTGTTGTTATGTATATTTGCTCTT	(AC) ₅	131	2.5	49-43°C/0.5°C	GU595393
M1	F-GTAATAACTTTTCTCTTATTTTTTCGA R-ACAATCTGCTACTAATTCGTACACC	(GT) ₁₀	142	1.5	55-50°C/0.5°C	GU595396
M2-1	F-TGTACGAATTAGTAGCAGATTGTAAGA R-TCGTTACTTTTAGAGAAGGATACATGT	(TG) ₇	216	2.5	55-50°C/0.5°C	GU595394
AC30	F-AGGATGAGGTTGGGGGTTAGT R-TTGATCGTGCAAAATAGATCC	(AAT) ₅	263	1.0	55-50°C/0.5°C	GU595395
J2-2	F-TGCATGGTTACAAGACCAGG R-GTCGTTTACGATATGAAAAATTGTGA	(GAA) ₉	200	3.0	65-58°C/1°C 36 cycles 58°C	GU595390
N1-2	F-AAAATTCAAGAAAGCCAATACATAAAA R-AACGAGTTTTCACCATTGTTGAT	$(TC)_2$ $(AC)_5$	310	1.5	65-55°C/0.5°C	GU595392
A6	F-TCTGAGATATGGCCGCGGAC R-TATGCATTCCCCACCAATTT	(AC) ₈	240	0	70-63°C/1.0°C	GU595391

Cockemani (1984). p<0.01							
Locus	Allele size range (bp)	n	k	Ho	$H_{\rm E}$	F _{IS}	
J3	84-190	59	2	0.492	0.476	-0.0332	
O4	114-125	59	4	0.932	0.529	-0.7732*	
M1	128-140	59	4	0.729	0.735	0.0087	
M2-1	216-236	59	2	0.475	0.493	0.0368	
AC30	260-334	59	3	0.288	0.565	0.4921*	
J2-2	171-196	59	3	0.034	0.130	0.7402*	
N1-2	262-318	59	3	0.576	0.659	0.1265	

2

0.492

0.490

-0.0036

A6

235-237

Table 2 Characterization of eight microsatellite loci isolated from *G. h. howdenae.* n: number of individuals genotyped. k: number of alleles. H_o and H_E: observed and expected heterozygosity per locus. F_{IS} estimates are global estimates over all alleles by Weir and Cockerham (1984). *p<0.01